BIOPLOTTER
General Information
The ROKIT INVIVO is a groundbreaking hybrid, bioprinter designed to advance tissue engineering and regenerative medicine research. The ROKIT INVIVO bioprinting platform stands out for its modular design, multi-material support, sterile environment, and adaptability, scaling from basic tissue constructs to advanced clinical-grade applications.
It enables the creation of intricate 3D cellular structures, ranging from hard-scaffold formations to soft tissue models, using a broad array of both biomaterials and bioinks. Compatible with synthetic, medicalgrade polymers like Poly(lactic-co-glycolic acid) (PLGA), Polycaprolactone (PCL), Poly(L-lactic acid) (PLLA), Polylactic acid (PLA) as well as a variety of bioinks such as collagen, alginate, gelatin, and hyaluronic acid. Furthermore, it allows the printing of nanocomposite polymer-based materials obtained by embedding nanohydroxyapatite or calcium phosphates. From a technological point of view, it combines multiple extrusion methods, such as filaments, syringe dispensers, and pneumatic hotmelt systems, that can be used interchangeably or in tandem.
The image on the left shows the 3D bioprinter ROKIT INVIVO. The bioprinter precisely deposits photocrosslinkable bioinks to create complex scaffolds (i.e., meniscus) useful for regenerative medicine.

Tecnical description
ROKIT INVIVO is equipped with a sterile closed chamber, an Android user interface, an LCD touchscreen, Wi-Fi connectivity, a UV lamp, and an H14 HEPA and laminar flow filter to ensure a completely sterile working environment.
The printer features an FDM extruder capable of reaching up to +250 °C, a Hot Melt Extruder up to +350 °C, support for up to 2 syringes bio dispensers, and a thermostatic print bed ranging from -5 °C to +80 °C. It also includes a UV LED for curing photoreactive materials and a sample temperature control station. The apparatus allows also the possibility to print multiple materials. Printing resolution≈100-200μm.Research areas and applications
Tissue engineering and Regenerative medicine.
Science highlights
G. Dal Poggetto, U. D’Amora, A. Ronca, M. G. Raucci, A. Soriente, G. Gomez d’Ayala, P. Laurienzo. Polym. Compos. (2025). https://doi.org/10.1002/pc.29470
F. Scalia, A. Maria Vitale, D. Picone, N. De Cesare, M. Swiontek Brzezinska, B. Kaczmarek-Szczepanska, A. Ronca, B. Zavan, F. Bucchieri, M. A. Szychlinska, U. D’Amora. Gels. 11, 40. (2025). https://doi.org/10.3390/gels11010040
L. Ferroni, U. D’Amora, C. Gardin, S. Leo, L. Dalla Paola, E. Tremoli, A. Giuliani, L. Calzà, A. Ronca, L. Ambrosio, B. Zavan. J. Nanobiotechnol. 21, 469 (2023). https://doi.org/10.1186/s12951-023-02202-9
A. Abbadessa, P. N. Bernal, G. Buttitta, A. Ronca, U. D’Amora, C. Zihlmann, N. Stiefel, L. Ambrosio, J. Malda, R. Levato, J. Crecente-Campo. J Control. Release. S0168-3659(23)00444-3. (2023). https://doi.org/10.1016/j.jconrel.2023.07.017
U. D’Amora, A. Ronca, S. Scialla, A. Soriente, P. Manini, J. W. Phua, C. Ottenheim, A. Pezzella, G. Calabrese, M. G. Raucci, L. Ambrosio. Nanomaterials. 13(4), 772. (2023). https://doi.org/10.3390/nano13040772
U. D’Amora A. Soriente, A. Ronca, S. Scialla, M. Perrella, P. Manini, J. W. Phua, C. Ottenheim, R. Di Girolamo, A. Pezzella, M. G. Raucci, L. Ambrosio. Biomedicines. 10(11), 2945. (2022). https://doi.org/10.3390/biomedicines10112945
L. Ferroni, C. Gardin, U. D’Amora, L. Calzà, A. Ronca, E. Tremoli, L. Ambrosio, B. Zavan. Biomater. Adv.. 139, p.213000. (2022). https://doi.org/10.1016/j.bioadv.2022.213000